WorldodTech

Регистрация


Технологии вокруг нас

Скорость Wi-Fi сегодня

Новая 3D технология ...

Композиционные и порошковые материалы

Карбоволокнит с углеродной матрицей типа КУП-ВМ по зна­чениям прочности и ударной вязкости в 5–10 раз превосходит специальные графиты; при нагреве в инертной атмосфере и ваку­уме он сохраняет прочность до 2200°С, на воздухе окисляется при 450°С и требует защитного покрытия. Коэффициент трения одного карбоволокнита с углеродной матрицей по другому высок (0,35–0,45), а износ мал (0,7–1 мкм на торможение).

Полимерные карбоволокниты используют в судо- и автомоби­лестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты при­меняют для изготовления деталей авиационной техники, аппара­туры для химической промышленности, в рентгеновском обору­довании и др.

Карбоволокниты с углеродной матрицей заменяют различные типы графитов. Они применяются для тепловой защиты, дисков авиационных тормозов, химически стойкой аппаратуры.

Физико-механические свойства карбоволокнитов приведены в табл.2.

5.4. Бороволокниты

Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя — борных волокон.

Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и моду­лем упругости, теплопроводностью и электропроводимостью. Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей.

Помимо непрерывного борного волокна применяют комплекс­ные боростеклониты, в которых несколько параллельных борных волокон оплетаются стеклонитью, придающей формоустойчивость. Применение боростеклонитей облегчает технологический процесс изготовления материала.

В качестве матриц для получения бороволокнитов исполь­зуют модифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 200°С; КМБ-3 и КМБ-Зк не требуют высокого давления при переработке и могут работать при темпе­ратуре не свыше 100°С; КМБ-2к работоспособен при 300°С.

Влияние на механические свойства бороволокнита содержа­ния волокна приведено на рис.12, а влияние различных матриц – на рис.13.

Рис.12. Зависимость механических свойств бороволокнита КМБ-1 от содержания борного волокна: Е – модуль упругости; σИЗГ – предел прочности при изгибе; G – модуль сдвига; τВ – предел прочности при сдвиге

Бороволокниты обладают высокими сопротивлениями уста­лости, они стойки к воздействию радиации, воды, органических растворителей и горючесмазочных материалов.

Рис.13. Зависимость разрушающего напряжения при изгибе бороволокнитов на различных связующих от температуры: 1, 2 – эпоксидное; 3 – полиимидное; 4 – кремнийорганическое связующее

Поскольку борные волокна являются полупроводниками, то бороволокниты обладают повышенной теплопроводностью и электропроводимостью: λ=43 кДж/(м∙К); α=4∙10-6 С-1 (вдоль волокон); ρV=1,94∙107 Ом∙см; е=12,6÷20,5 (при частоте тока 107 Гц); tgδ=0,02÷0,051 (при частоте тока 107 Гц). Для бороволокнитов прочность при сжатии в 2–2,5 раза больше, чем для карбоволокнитов.

Физико-механические свойства бороволокнитов приведены в табл.2.

Изделия из бороволокнитов применяют в авиационной и космической технике (профили, панели, роторы и лопатки компрес­соров, лопасти винтов и трансмиссионные валы вертолетов и т.д.).

5.5. Органоволокниты

Органоволокниты представляют собой композиционные материалы, состоящие из полимерного связующего и упрочнителей (наполнителей) в виде синтетических волокон. Такие материалы обладают малой массой, сравнительно высокими удельной проч­ностью и жесткостью, стабильны при действии знакопеременных нагрузок и резкой смене температуры. Для синтетических воло­кон потери прочности при текстильной переработке небольшие; они малочувствительны к повреждениям.

В органоволокнитах значения модуля упругости и температур­ных коэффициентов линейного расширения упрочнителя и свя­зующего близки. Происходит диффузия компонентов связующего в волокно и химическое взаимодействие между ними. Структура материала бездефектна. Пористость не превышает 1–3% (в дру­гих материалах 10–20%). Отсюда стабильность механических свойств органоволокнитов при резком перепаде температур, дей­ствии ударных и циклических нагрузок. Ударная вязкость высо­кая (400–700 кДж/м2). Недостатком этих материалов является сравнительно низкая прочность при сжатии и высокая ползучесть (особенно для эластичных волокон).

Органоволокниты устойчивы в агрессивных средах и во влаж­ном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая. Большинство органоволокнитов может длительно работать при температуре 100–150°С, а на основе полиимидного связующего и полиоксадиазольных волокон – при 200–300°С.

Перейти на страницу: 5 6 7 8 9 10 11